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Abstract. We show that the photon-added squeezed vacailihs (z)|0) and the photon-added
squeezed one-photon stat¥#'S(z)|1), wherem is a non-negative integer, may be regarded as
even and odd nonlinear coherent states, respectively. To achieve this, we derive an operator-valued
function f (N, m) of the number operatay = a'a such thatu™ $(2)|i) (i =0, 1) are eigenstates

of (N, m)a?. Based on this, and using the unified method developed by Seeaitave find that

a™ $(z)|i) can be equivalently expressed in exponential forms. The eigenstafg®Vof-m)a?

are also constructed and their nonclassical features are studied in detail.

1. Introduction

Recentlynonlinear coherent statqNLCSs) have attracted attention [1, 2]. These states are
defined as the right-hand eigenstates'oN)a, where f(N) is a nonlinear operator-valued
function of the number operato¥ = a'a anda(a') is the boson annihilation (creation)
operator. They may be regarded as a generalization oftheformed coherent states [3].
One special class of NLCSs could be generated as stationary states of the centre-of-mass
motion of a laser-driven trapped ion far from the Lamb—Dicke limit [1]. The notion of NLCSs
has been generalized to teeen and odd NLC94], defined as the eigenstates pfN )a?,
and to the real and imaginary nonlinear Satinger cat states [5]. Another class of states that
have been a subject of increasing interespu@on-added statekat are obtained by repeated
application of photon creation operators on a given state. The earliest examples in the literature
are the photon-added coherent states by Agarwal and Tara [6]. It was shown in [6] that photon-
added states can be produced in the processes of the field—atom interaction in a cavity. Since
then, the photon-added squeezed states [7-9], the photon-added thermal states [10, 11] and
the photon-added even and odd coherent states [12], etc, have been introduced. Most of the
theoretical studies concerning these states have focused on their generations and the possible
occurrence of various nonclassical effects exhibited by them. More recently, an effective
method of generating photon-added states in a travelling light beam by means of conditional
measurements on a beam splitter was also proposed [13, 14].

In this paper we show that the photon-added squeezed vacuum (PASV) and the photon-
added squeezed one-photon state (PASOPS) can be viewed as special even and odd NLCSs,
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respectively. Our original stimulus was the paper of Sivakumar [15], in which the photon-
added coherent states are proven to be special NLCSs. The PASV was first studied by Zhang
and Fan [7] and then generalized by others to photon-added squeezed coherent states [8,9]. In
view of the fact that the squeezed vacuum (the even Fock subspace)

1/2 oo
S(z)|0)=( = ) Z (zn)!(e”tanhr)”|2n) 1)
n=0

coshr 2'n!
and the squeezed one-photon state (the odd Fock subspace)
1 V& J/@+)T
Yy = 7 hr)*|2n + 1 2
coshr) 2! (€ tanhry"|2n + 1) @

respectively correspond, from a group theoretical point of view, to two unitary irreducible
representations af«(1, 1) Lie algebra:k = %1 andk = % (k is the Bargmann index that labels
irreducible representations @f (1, 1)) [16], we should study the PASV and the PASOPS as a
whole. In the above equations

S(z) = exp(%aJr2 — %a2> z=ré’ 3)

is the single-mode squeezing operator [17].

S(@)[1) =<

2. The PASV (PASOPS) as an even (odd) NLCS

Let us suppose that the (un-normalized) PASY S(z)|0) and PASOPS ™ S(z)|1) (for the
normalization of PASV, see, e.g., [7]) satisfy a unified eigenvalue equation as follows:

F(N, m)a*a™S(2)|i) = aa™S(z)|i) i=0,1 4)
whereinm is a non-negative integef,(N, m) is a function ofN andm to be determinedy is
a complex parameter which should be related tmserting equations (1) and (2) into (4) and

taking into account the well known relations for the action of boson operators onto the Fock
states (e.g. [18]), we obtain the following equation:

f(m+2n,m) = 2n+2 n=01..) (5)
m+2n+2)(m+2n+1)
2n+2
f(m+2n+l,m)=(m+2n+2)(m+2n+3) n=0,1,..) (6)
o = €’ tanhr. 7)
Expressions (5) and (6) are summarized as
m—m+2)/[(n+1D(n+2)] if n—miseven

fn,m) = 8

m—m+1D/[(n+D(n+2)] if n—misodd.

In what follows, we use the notatior][to denote the greatest integer less than or equal to
Then f (n, m) is rewritten in a compact form:
2[n7m+2

_ 2
fnm = Sl ©

Therefore, the PASV and the PASOPS can be identified with the even and odd NLCSs,
respectively. Whem = 0, (4) reduces to the eigenvalue equations satisfied by the squeezed
vacuum and squeezed one-photon state:

1 5, _ 1 5, _
<N+ 14 )S(Z)|O> = aS(2)|0) <N+2a )S(z)ll) =aS(2)[1). (10)
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3. Exponential forms of the PASV and the PASOPS

It is also possible to express the PASV and the PASOPS in equivalent exponential-operator
forms. This can be achieved by using the procedure by Shetn [19, 20]. Let

F = f(N,m)a’. By a direct observation we find that the states which are annihilated by
F are|0), |1), |m) and|m + 1). Accordingly the Fock space is clearly split into four sectors.
The sectoss; (j =0, 1, m, m + 1) is built out of| j) by repeated applications oft

-1
So={|2n>,n=0,1,-.-,[m7};m>1}

-2
Sl={|2n+1),n=0,1,...,[mT];m>2} (11)
Sy ={lm+2n),n=0,1,2, ..}

Sm+1={|m+2n+1)an=03 1»23}

So and S, are both finite-dimensional and it is not possible to find opera‘_ﬂgrandGir such

that [F, Gl] = 1 and [F, GI] = 1, respectively, hold in each sector. Sireands,,.; are
infinite-dimensional, the approachin [19]is applicable. (At the same time, it should be noticed
that the two ‘vacuajm) and|m + 1) originate directly from the zeros of the functigiin, m)

but not immediately from the annihilation actiona@fin F; in this case the approach in [19]

still applies. See reference 14 of [19].) L%t andS,,+1 denote the spaces spanned by the sets
of statessS,, andsS,,+1, and introduce two operato(%jn andG;+l by

1 1
GZ:EFTW(Nu—k) k=m,m+1 (12)
then
[F.GIIW = W) VIY) € Si. (13)

Substituting the explicit expression ¢g{ N, m) in equation (9) into equation (12), and taking
into account the fact that in the sectyr

N—-—m+2
N+2—k:2[Tm} (14)
we get
at?
Gl =—. 15
k 2 ( )
Thus, apart from the normalization constants, the eigenstatésioé
~ & 12 ~ @ 12
@ ~exp(Fa') Im)  lahe ~ exp(Za'?) Im+ 1), (16)

It turns out that«),, and|«),,+1 are, respectively, the exponential forms of the PASV and the
PASOPS.

4. Eigenstates off (N, —m)a?

Now that f (n, —m) (m > 0) is also a well-defined function
2[2]
n+DH(n+2

we are naturally interested in what the eigenstatesf @¥, —m)a® are. LetF’ denote
f(N,—m)a®. It is easily seen that the states which are annihilated”bgre |0) and |1).

f(n, —m) = (17)
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(Note that the functiory (n, —m) has no zeros at positive integer values:aind soF’ has
no ‘additional’ vacua such gs:) and|m + 1) being F’'s vacua.) The sectd; built out of |0)

by repeated applications @' is So = {12n),n = 0,1, ...}, while the sectolS; generated
by consecutively applying”" on [1) is S} = {|2n + 1),n = 0,1,...}. S} and S} are both
infinite-dimensional and thus the method in [19] applies. Let us introduce two opeﬁgors
andG by

G = %F/TF/F/T(N+2—1) i=01 (18)
that is,
G a”? 1 Gl = a’® 1 (19)
2 (N+1)f(N,—m) 2 (N+2)f(N, —m)
so that
[F.G1=1 i=0,1 (20)

Consequently the two eigenstatesfifare é‘Gﬁi) (i = 0,1). Inserting the expression of
f (N, —m) in equation (17) into (19) we have

/ N+
Gy = a— - = a"Go(N) (21)
4[5
) N+1
GlT = TZW = angl(N). (22)
4[]

Then, with the use of the relation

tn 1 n=20
N {amgo(N)gouv +2)...Go(N+21—-2  n>1 (23)
and from the definition ofjp(N) in equation (21) we calculate
010y = Z (“G )’ 10)
n=0
=10+ Z‘—,a%o(mgo(zv +2)...Go(N +21 - 2)[0)
) + Z LY 0G0 .. Go(2n — 2)120)
=y TR, (24)
—= Tmn)

whereinl',, (n) is introduced by

I m+ 2i
Foin) = H<2[ 2 D n=ha (25)

i=1
1 n=0.

Similarly, one can derive

. < o' /2n T D)
@iy = S ev@r 26
1) ; T2t (26)
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Thus, the normalized eigenstatesfafV, —m)a? (m > 0) are

|, —m), =MZL YO o) - = A, Z - Yonvy @)
n=0 l—‘m (I’l) m+l(n)

whereA, and\, are normalization constants equal to

(X e\ (X e n+ D\
Ne= (Zo (Fm(n>)2) No = <ZO (Tprn(n))? ) - @8

The subscripts ando denote even and odd states, respectively. Itfollows from the above results
that for an evem:, |, —m), and|a, —(m + 1)), are identical]«, —m), and|a, —(m — 1)),

are also the same. When= 0, |«, —m), reduces to the squeezed vacuum and-m), to

the squeezed one-photon state. On the other hand, wher0, |«, —m), degenerates to the
vacuum state anid, —m), to the one-photon state. Put another way—m), is intermediate
between the squeezed vacuum and the vacuum state anth), between the squeezed one-
photon state and the one-photon state. It should be mentioned that the PASV is intermediate
between the squeezed vacuum and the number gtateand the PASOPS is between the
squeezed one-photon state and the number [gtatel).

5. Nonclassical properties ofa, —m),. and |a, —m),

5.1. Photon statistics

A field is antibunched if its second-order correlation functidf(0) < 1 [21], namely,
(N?) — (N)
(N)?

For |a, —m), and |o, —m),, the average¢N') (I = 1,2,...) are given by the following
expressions:

g2 = <1 (29)

i @n)! 2n)!|a|?"
L (T, ()2

o (2n+ 1) (20 + Dlja)*
NZ
‘ ; [Cer(n)]2

In our numerical study, we fing® (0) for |«, —m). is definitely greater than unity irrespective
of the values ofn, that is, the field in an even staie —m), is always bunched. In contrast,
the odd stategr, —m), strongly exhibit the antibunching effect for any valuexofin figure 1
we plotg@(0) for |, —m),, denoted by ? (0), against the parameterfor different values
of m (recall that is related tax through equation (7)). We find thaf? (0) is a monotonically
increasing function of, however, when is very large g‘? (0) is almost independent of This

is reasonable since when— oo, |@| = tanhr — 1. As a result, the maximum antibunching
is achieved in the one-photon state-¢ 0). Atthe same time, it is clear thaf? (0) decreases
with increasingn. Whenm < 4, there is an interval of within which |, —m), exhibits a
bunching effect. Whem > 4, the antibunching behaviour persists for the whole interval of

Ao, —m|N'ot, —=m), = N?

e

(30)

ola, —m|N'|a, —m), = (31)

5.2. Quadrature squeezing

The quadrature operators of the single-mode field are defined as

X:%Z(a+aT) P=—(a—aT) (32)
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1.0 R 1 N 1
m=5 and m=6

m=7 and m=8

0?(0)

m=9 and m=10

m=19 and m=20

Figure 1. The second-order correlation functigf? (0) of the odd statefy, —m), as a function of
the parameter for two different values ofn, r is related tax througha = 3D€? tanhr - g@(0)
is independent of.

They satisfy the commutation relatio¥ [ P] = i and consequently their variancesX)? =
(X?) — (X)?, (AP)? = (P?) — (P)? obey the Heisenberg uncertainty relation

(AX)2(APY? > g (33)

The field is said to be squeezed in tkig P) quadrature {AX)? < 3 ((AP)? < 3). Forthe
sake of convenience, we define the squeezing indices as
Sy =2(AX)?>—1 Sp=2(AP)?>—1. (34)

WhenSy < 0 (Sp < 0), the field is squeezed in the (P) quadrature. Note that for both
stateso, —m), and|o, —m), we always havea) = (a') = 0 so thatSy andS, are given by

Sy = (a®+a'?) + 2(N) Sp = —(a®+a") +2(N). (35)
Using the definitions ofe, —m), and|«, —m),, we obtain the following expressions:
X (2n +2)! |
(o, —mlale, —m), = N2 2t Dl (36)

24T, (1T (1 + 1)
X (2n+ 3P
n=0 L1 (m)Tipaa(n + 1) -

It is convenient to make numerical evaluations of the expressions above. The results show
that there is no squeezing at all in the odd stades-m),, while the even statelgr, —m),

could exhibit squeezing for any valuesmfandr, as we can appreciate in figure 2, in which

Sx (denoted bySx. in the figure) is plotted against the parametdor different values of

m. In figure 2 we have choseéh= 7 because in this case the maximum squeezing irkthe
quadrature is achieved. One can see that in this Kasgueezing always occurs irrespective

of the values ofn andr. The depth of squeezing is very sensitive to the values:ofsm
decreases, th¥-squeezing becomes more effective. This means that decreasing the degree
of excitation can enhance the squeezinglimuadrature. It is interesting to note that the

37)

2 2
(1(05, _m|a |Ol, _m>o = -/V;;
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O.OI N 1 " 1 " 1 2 1 N 1

m=20 and m=21

m=10 and m=11

m=6 and m=7 N

m=4 and m=5

Figure 2. Squeezing indeXx of the even stategr, —m), as a function of the parameterfor
different values ofr, r is related tax = 3D€" tanhr - 6 is taken asr.

nonclassical behaviours of our new even and odd states are very similar to those of the even
and odd coherent states introduced by Hillery [22]. In [23] Xia and Guo showed that the even
coherent states can exhibit squeezing but not antibunching, however, the odd coherent states
always exhibit antibunching but never squeezing.

6. Conclusion

In this paper we have shown that the PASV and PASOPS are even and odd NLCSs, respectively,

N—m+2
that is, they are both the eigenstates(—légfwjz)az (m > 0). On the basis of this fact, they

can be equivalently cast into exponential-operator forms. Furthermore, we have constructed

N+m+2 . H
the eigenstates q{%az. It turns out that the new states are highly nonclassical.
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