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Abstract. We show that the photon-added squeezed vacuuma†mS(z)|0〉 and the photon-added
squeezed one-photon statea†mS(z)|1〉, wherem is a non-negative integer, may be regarded as
even and odd nonlinear coherent states, respectively. To achieve this, we derive an operator-valued
functionf (N,m) of the number operatorN = a†a such thata†mS(z)|i〉 (i = 0, 1) are eigenstates
of f (N,m)a2. Based on this, and using the unified method developed by Shantaet al, we find that
a†mS(z)|i〉 can be equivalently expressed in exponential forms. The eigenstates off (N,−m)a2

are also constructed and their nonclassical features are studied in detail.

1. Introduction

Recentlynonlinear coherent states(NLCSs) have attracted attention [1, 2]. These states are
defined as the right-hand eigenstates off (N)a, wheref (N) is a nonlinear operator-valued
function of the number operatorN = a†a and a(a†) is the boson annihilation (creation)
operator. They may be regarded as a generalization of theq-deformed coherent states [3].
One special class of NLCSs could be generated as stationary states of the centre-of-mass
motion of a laser-driven trapped ion far from the Lamb–Dicke limit [1]. The notion of NLCSs
has been generalized to theeven and odd NLCSs[4], defined as the eigenstates off (N)a2,
and to the real and imaginary nonlinear Schrödinger cat states [5]. Another class of states that
have been a subject of increasing interest arephoton-added statesthat are obtained by repeated
application of photon creation operators on a given state. The earliest examples in the literature
are the photon-added coherent states by Agarwal and Tara [6]. It was shown in [6] that photon-
added states can be produced in the processes of the field–atom interaction in a cavity. Since
then, the photon-added squeezed states [7–9], the photon-added thermal states [10, 11] and
the photon-added even and odd coherent states [12], etc, have been introduced. Most of the
theoretical studies concerning these states have focused on their generations and the possible
occurrence of various nonclassical effects exhibited by them. More recently, an effective
method of generating photon-added states in a travelling light beam by means of conditional
measurements on a beam splitter was also proposed [13,14].

In this paper we show that the photon-added squeezed vacuum (PASV) and the photon-
added squeezed one-photon state (PASOPS) can be viewed as special even and odd NLCSs,
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respectively. Our original stimulus was the paper of Sivakumar [15], in which the photon-
added coherent states are proven to be special NLCSs. The PASV was first studied by Zhang
and Fan [7] and then generalized by others to photon-added squeezed coherent states [8,9]. In
view of the fact that the squeezed vacuum (the even Fock subspace)

S(z)|0〉 =
(

1

coshr

)1/2 ∞∑
n=0

√
(2n)!

2nn!
(eiθ tanhr)n|2n〉 (1)

and the squeezed one-photon state (the odd Fock subspace)

S(z)|1〉 =
(

1

coshr

)3/2 ∞∑
n=0

√
(2n + 1)!

2nn!
(eiθ tanhr)n|2n + 1〉 (2)

respectively correspond, from a group theoretical point of view, to two unitary irreducible
representations ofsu(1, 1) Lie algebra:k = 1

4 andk = 3
4 (k is the Bargmann index that labels

irreducible representations ofsu(1, 1)) [16], we should study the PASV and the PASOPS as a
whole. In the above equations

S(z) = exp

(
z

2
a†2− z

∗

2
a2

)
z = reiθ (3)

is the single-mode squeezing operator [17].

2. The PASV (PASOPS) as an even (odd) NLCS

Let us suppose that the (un-normalized) PASVa†mS(z)|0〉 and PASOPSa†mS(z)|1〉 (for the
normalization of PASV, see, e.g., [7]) satisfy a unified eigenvalue equation as follows:

f (N,m)a2a†mS(z)|i〉 = αa†mS(z)|i〉 i = 0, 1 (4)

whereinm is a non-negative integer,f (N,m) is a function ofN andm to be determined,α is
a complex parameter which should be related toz. Inserting equations (1) and (2) into (4) and
taking into account the well known relations for the action of boson operators onto the Fock
states (e.g. [18]), we obtain the following equation:

f (m + 2n,m) = 2n + 2

(m + 2n + 2)(m + 2n + 1)
(n = 0, 1, . . .) (5)

f (m + 2n + 1, m) = 2n + 2

(m + 2n + 2)(m + 2n + 3)
(n = 0, 1, . . .) (6)

α = eiθ tanhr. (7)

Expressions (5) and (6) are summarized as

f (n,m) =
{
(n−m + 2)/[(n + 1)(n + 2)] if n−m is even

(n−m + 1)/[(n + 1)(n + 2)] if n−m is odd.
(8)

In what follows, we use the notation [x] to denote the greatest integer less than or equal tox.
Thenf (n,m) is rewritten in a compact form:

f (n,m) = 2[ n−m+2
2 ]

(n + 1)(n + 2)
. (9)

Therefore, the PASV and the PASOPS can be identified with the even and odd NLCSs,
respectively. Whenm = 0, (4) reduces to the eigenvalue equations satisfied by the squeezed
vacuum and squeezed one-photon state:(

1

N + 1
a2

)
S(z)|0〉 = αS(z)|0〉

(
1

N + 2
a2

)
S(z)|1〉 = αS(z)|1〉. (10)
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3. Exponential forms of the PASV and the PASOPS

It is also possible to express the PASV and the PASOPS in equivalent exponential-operator
forms. This can be achieved by using the procedure by Shantaet al [19, 20]. Let
F = f (N,m)a2. By a direct observation we find that the states which are annihilated by
F are|0〉, |1〉, |m〉 and|m + 1〉. Accordingly the Fock space is clearly split into four sectors.
The sectorSj (j = 0, 1, m,m + 1) is built out of|j〉 by repeated applications ofF †

S0 =
{
|2n〉, n = 0, 1, . . . ,

[
m− 1

2

]
;m > 1

}
S1 =

{
|2n + 1〉, n = 0, 1, . . . ,

[
m− 2

2

]
;m > 2

}
Sm = {|m + 2n〉, n = 0, 1, 2, . . .}
Sm+1 = {|m + 2n + 1〉, n = 0, 1, 2, . . .}.

(11)

S0 andS1 are both finite-dimensional and it is not possible to find operatorsG
†
0 andG†

1 such
that [F,G†

0] = 1 and [F,G†
1] = 1, respectively, hold in each sector. SinceSm andSm+1 are

infinite-dimensional, the approach in [19] is applicable. (At the same time, it should be noticed
that the two ‘vacua’|m〉 and|m + 1〉 originate directly from the zeros of the functionf (n,m)
but not immediately from the annihilation action ofa2 in F ; in this case the approach in [19]
still applies. See reference 14 of [19].) LetSm andSm+1 denote the spaces spanned by the sets
of statesSm andSm+1, and introduce two operatorsG†

m andG†
m+1 by

G
†
k =

1

2
F † 1

FF †
(N + 2− k) k = m,m + 1 (12)

then

[F,G†
k]|ψ〉k = |ψ〉k ∀|ψ〉k ∈ Sk. (13)

Substituting the explicit expression off (N,m) in equation (9) into equation (12), and taking
into account the fact that in the sectorSk

N + 2− k = 2

[
N −m + 2

2

]
(14)

we get

G
†
k =

a†2

2
. (15)

Thus, apart from the normalization constants, the eigenstates ofF are

|α〉m ∼ exp
(α

2
a†2
)
|m〉 |α〉m+1 ∼ exp

(α
2
a†2
)
|m + 1〉. (16)

It turns out that|α〉m and|α〉m+1 are, respectively, the exponential forms of the PASV and the
PASOPS.

4. Eigenstates off (N,−m)a2

Now thatf (n,−m) (m > 0) is also a well-defined function

f (n,−m) = 2[ n+m+2
2 ]

(n + 1)(n + 2)
(17)

we are naturally interested in what the eigenstates off (N,−m)a2 are. LetF ′ denote
f (N,−m)a2. It is easily seen that the states which are annihilated byF ′ are |0〉 and |1〉.
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(Note that the functionf (n,−m) has no zeros at positive integer values ofn and soF ′ has
no ‘additional’ vacua such as|m〉 and|m + 1〉 beingF ’s vacua.) The sectorS ′0 built out of |0〉
by repeated applications ofF ′† is S ′0 = {|2n〉, n = 0, 1, . . .}, while the sectorS ′1 generated
by consecutively applyingF ′† on |1〉 is S ′1 = {|2n + 1〉, n = 0, 1, . . . }. S ′0 andS ′1 are both
infinite-dimensional and thus the method in [19] applies. Let us introduce two operatorsG

′†
0

andG′†1 by

G
′†
i =

1

2
F ′†

1

F ′F ′†
(N + 2− i) i = 0, 1 (18)

that is,

G
′†
0 =

a†2

2

1

(N + 1)f (N,−m) G
′†
1 =

a†2

2

1

(N + 2)f (N,−m) (19)

so that

[F ′,G′†i ] = 1 i = 0, 1. (20)

Consequently the two eigenstates ofF ′ are eαG
′†
i |i〉 (i = 0, 1). Inserting the expression of

f (N,−m) in equation (17) into (19) we have

G
′†
0 = a†2 N + 2

4[N+m+2
2 ]
≡ a†2G0(N) (21)

G
′†
1 = a†2 N + 1

4[N+m+2
2 ]
≡ a†2G1(N). (22)

Then, with the use of the relation

(G
′†
0 )
n =

{
1 n = 0
a†2nG0(N)G0(N + 2) . . .G0(N + 2n− 2) n > 1

(23)

and from the definition ofG0(N) in equation (21) we calculate

eαG
′†
0 |0〉 =

∞∑
n=0

(αG
′†
0 )
n

n!
|0〉

= |0〉 +
∞∑
n=1

αn

n!
a†2nG0(N)G0(N + 2) . . .G0(N + 2n− 2)|0〉

= |0〉 +
∞∑
n=1

αn
√
(2n)!

n!
G0(0)G0(2) . . .G0(2n− 2)|2n〉

=
∞∑
n=0

αn
√
(2n)!

0m(n)
|2n〉 (24)

wherein0m(n) is introduced by

0m(n) ≡


n∏
i=1

(
2

[
m + 2i

2

])
n = 1, 2, . . .

1 n = 0.

(25)

Similarly, one can derive

eαG
′†
1 |1〉 =

∞∑
n=0

αn
√
(2n + 1)!

0m+1(n)
|2n + 1〉. (26)
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Thus, the normalized eigenstates off (N,−m)a2 (m > 0) are

|α,−m〉e = Ne
∞∑
n=0

αn
√
(2n)!

0m(n)
|2n〉 |α,−m〉o = No

∞∑
n=0

αn
√
(2n + 1)!

0m+1(n)
|2n + 1〉 (27)

whereNe andNo are normalization constants equal to

Ne =
( ∞∑
n=0

|α|2n(2n)!
(0m(n))2

)−1/2

No =
( ∞∑
n=0

|α|2n(2n + 1)!

(0m+1(n))2

)−1/2

. (28)

The subscriptse andodenote even and odd states, respectively. It follows from the above results
that for an evenm, |α,−m〉e and|α,−(m + 1)〉e are identical;|α,−m〉o and|α,−(m − 1)〉o
are also the same. Whenm = 0, |α,−m〉e reduces to the squeezed vacuum and|α,−m〉o to
the squeezed one-photon state. On the other hand, whenα→ 0, |α,−m〉e degenerates to the
vacuum state and|α,−m〉o to the one-photon state. Put another way,|α,−m〉e is intermediate
between the squeezed vacuum and the vacuum state and|α,−m〉o between the squeezed one-
photon state and the one-photon state. It should be mentioned that the PASV is intermediate
between the squeezed vacuum and the number state|m〉, and the PASOPS is between the
squeezed one-photon state and the number state|m + 1〉.

5. Nonclassical properties of|α,−m〉e and |α,−m〉o

5.1. Photon statistics

A field is antibunched if its second-order correlation functiong(2)(0) < 1 [21], namely,

g(2)(0) = 〈N
2〉 − 〈N〉
〈N〉2 < 1. (29)

For |α,−m〉e and |α,−m〉o, the averages〈Nl〉 (l = 1, 2, . . .) are given by the following
expressions:

e〈α,−m|Nl|α,−m〉e = N 2
e

∞∑
n=0

(2n)l(2n)!|α|2n
(0m(n))2

(30)

o〈α,−m|Nl|α,−m〉o = N 2
o

∞∑
n=0

(2n + 1)l(2n + 1)!|α|2n
[0m+1(n)]2

. (31)

In our numerical study, we findg(2)(0) for |α,−m〉e is definitely greater than unity irrespective
of the values ofm, that is, the field in an even state|α,−m〉e is always bunched. In contrast,
the odd states|α,−m〉o strongly exhibit the antibunching effect for any value ofm. In figure 1
we plotg(2)(0) for |α,−m〉o, denoted byg(2)o (0), against the parameterr for different values
ofm (recall thatr is related toα through equation (7)). We find thatg(2)o (0) is a monotonically
increasing function ofr, however, whenr is very large,g(2)o (0) is almost independent ofr. This
is reasonable since whenr →∞, |α| = tanhr → 1. As a result, the maximum antibunching
is achieved in the one-photon state (r → 0). At the same time, it is clear thatg(2)o (0) decreases
with increasingm. Whenm 6 4, there is an interval ofr within which |α,−m〉o exhibits a
bunching effect. Whenm > 4, the antibunching behaviour persists for the whole interval ofr.

5.2. Quadrature squeezing

The quadrature operators of the single-mode field are defined as

X = 1√
2
(a + a†) P = 1√

2i
(a − a†). (32)
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Figure 1. The second-order correlation functiong(2)(0) of the odd states|α,−m〉o as a function of
the parameterr for two different values ofm, r is related toα throughα = 3Deiθ tanhr · g(2)(0)
is independent ofθ .

They satisfy the commutation relation [X,P ] = i and consequently their variances(1X)2 =
〈X2〉 − 〈X〉2, (1P )2 = 〈P 2〉 − 〈P 〉2 obey the Heisenberg uncertainty relation

(1X)2(1P )2 > 1
4. (33)

The field is said to be squeezed in theX (P ) quadrature if(1X)2 < 1
2 ((1P )2 < 1

2). For the
sake of convenience, we define the squeezing indices as

SX = 2(1X)2 − 1 SP = 2(1P )2 − 1. (34)

WhenSX < 0 (SP < 0), the field is squeezed in theX (P ) quadrature. Note that for both
states|α,−m〉e and|α,−m〉o we always have〈a〉 = 〈a†〉 = 0 so thatSX andSP are given by

SX = 〈a2 + a†2〉 + 2〈N〉 SP = −〈a2 + a†2〉 + 2〈N〉. (35)

Using the definitions of|α,−m〉e and|α,−m〉o, we obtain the following expressions:

e〈α,−m|a2|α,−m〉e = N 2
e

∞∑
n=0

(2n + 2)!|α|2nα
0m(n)0m(n + 1)

(36)

o〈α,−m|a2|α,−m〉o = N 2
o

∞∑
n=0

(2n + 3)!|α|2nα
0m+1(n)0m+1(n + 1)

. (37)

It is convenient to make numerical evaluations of the expressions above. The results show
that there is no squeezing at all in the odd states|α,−m〉o, while the even states|α,−m〉e
could exhibit squeezing for any values ofm andr, as we can appreciate in figure 2, in which
SX (denoted bySXe in the figure) is plotted against the parameterr for different values of
m. In figure 2 we have chosenθ = π because in this case the maximum squeezing in theX

quadrature is achieved. One can see that in this caseX-squeezing always occurs irrespective
of the values ofm andr. The depth of squeezing is very sensitive to the values ofm: asm
decreases, theX-squeezing becomes more effective. This means that decreasing the degree
of excitation can enhance the squeezing inX quadrature. It is interesting to note that the
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Figure 2. Squeezing indexSX of the even states|α,−m〉e as a function of the parameterr for
different values ofm, r is related toα = 3Deiθ tanhr · θ is taken asπ .

nonclassical behaviours of our new even and odd states are very similar to those of the even
and odd coherent states introduced by Hillery [22]. In [23] Xia and Guo showed that the even
coherent states can exhibit squeezing but not antibunching, however, the odd coherent states
always exhibit antibunching but never squeezing.

6. Conclusion

In this paper we have shown that the PASV and PASOPS are even and odd NLCSs, respectively,

that is, they are both the eigenstates of
2[ N−m+2

2 ]
(N+1)(N+2) a

2 (m > 0). On the basis of this fact, they
can be equivalently cast into exponential-operator forms. Furthermore, we have constructed

the eigenstates of
2[ N+m+2

2 ]
(N+1)(N+2) a

2. It turns out that the new states are highly nonclassical.
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